\(\int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [483]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 45, antiderivative size = 226 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 a (A+9 B) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (16 A+18 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a (16 A+18 B+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a (16 A+18 B+21 C) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[Out]

2/63*a*(A+9*B)*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2)+2/105*a*(16*A+18*B+21*C)*sin(d*x+c)/d/cos(
d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2)+8/315*a*(16*A+18*B+21*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1
/2)+16/315*a*(16*A+18*B+21*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/9*A*sin(d*x+c)*(a+a*cos(d
*x+c))^(1/2)/d/cos(d*x+c)^(9/2)

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {3122, 3059, 2851, 2850} \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {8 a (16 A+18 B+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a (16 A+18 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {16 a (16 A+18 B+21 C) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 a (A+9 B) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Int[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

(2*a*(A + 9*B)*Sin[c + d*x])/(63*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*a*(16*A + 18*B + 21*C)*Si
n[c + d*x])/(105*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (8*a*(16*A + 18*B + 21*C)*Sin[c + d*x])/(315
*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (16*a*(16*A + 18*B + 21*C)*Sin[c + d*x])/(315*d*Sqrt[Cos[c +
 d*x]]*Sqrt[a + a*Cos[c + d*x]]) + (2*A*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2))

Rule 2850

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3122

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n +
1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C
 - B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x]
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {1}{2} a (A+9 B)+\frac {3}{2} a (2 A+3 C) \cos (c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx}{9 a} \\ & = \frac {2 a (A+9 B) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{21} (16 A+18 B+21 C) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a (A+9 B) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (16 A+18 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{105} (4 (16 A+18 B+21 C)) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a (A+9 B) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (16 A+18 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a (16 A+18 B+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{315} (8 (16 A+18 B+21 C)) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a (A+9 B) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (16 A+18 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a (16 A+18 B+21 C) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a (16 A+18 B+21 C) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.91 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.69 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {\sqrt {a (1+\cos (c+d x))} (214 A+162 B+189 C+2 (88 A+99 B+63 C) \cos (c+d x)+11 (16 A+18 B+21 C) \cos (2 (c+d x))+32 A \cos (3 (c+d x))+36 B \cos (3 (c+d x))+42 C \cos (3 (c+d x))+32 A \cos (4 (c+d x))+36 B \cos (4 (c+d x))+42 C \cos (4 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{315 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*(214*A + 162*B + 189*C + 2*(88*A + 99*B + 63*C)*Cos[c + d*x] + 11*(16*A + 18*B + 2
1*C)*Cos[2*(c + d*x)] + 32*A*Cos[3*(c + d*x)] + 36*B*Cos[3*(c + d*x)] + 42*C*Cos[3*(c + d*x)] + 32*A*Cos[4*(c
+ d*x)] + 36*B*Cos[4*(c + d*x)] + 42*C*Cos[4*(c + d*x)])*Tan[(c + d*x)/2])/(315*d*Cos[c + d*x]^(9/2))

Maple [A] (verified)

Time = 13.43 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.72

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (128 A \left (\cos ^{4}\left (d x +c \right )\right )+144 B \left (\cos ^{4}\left (d x +c \right )\right )+168 C \left (\cos ^{4}\left (d x +c \right )\right )+64 A \left (\cos ^{3}\left (d x +c \right )\right )+72 B \left (\cos ^{3}\left (d x +c \right )\right )+84 C \left (\cos ^{3}\left (d x +c \right )\right )+48 A \left (\cos ^{2}\left (d x +c \right )\right )+54 B \left (\cos ^{2}\left (d x +c \right )\right )+63 C \left (\cos ^{2}\left (d x +c \right )\right )+40 A \cos \left (d x +c \right )+45 B \cos \left (d x +c \right )+35 A \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{315 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {9}{2}}}\) \(163\)
parts \(\frac {2 A \sin \left (d x +c \right ) \left (128 \left (\cos ^{4}\left (d x +c \right )\right )+64 \left (\cos ^{3}\left (d x +c \right )\right )+48 \left (\cos ^{2}\left (d x +c \right )\right )+40 \cos \left (d x +c \right )+35\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{315 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {9}{2}}}+\frac {2 B \sin \left (d x +c \right ) \left (16 \left (\cos ^{3}\left (d x +c \right )\right )+8 \left (\cos ^{2}\left (d x +c \right )\right )+6 \cos \left (d x +c \right )+5\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{35 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}+\frac {2 C \sin \left (d x +c \right ) \left (8 \left (\cos ^{2}\left (d x +c \right )\right )+4 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{15 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(218\)

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+cos(d*x+c)*a)^(1/2)/cos(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

2/315/d*sin(d*x+c)*(128*A*cos(d*x+c)^4+144*B*cos(d*x+c)^4+168*C*cos(d*x+c)^4+64*A*cos(d*x+c)^3+72*B*cos(d*x+c)
^3+84*C*cos(d*x+c)^3+48*A*cos(d*x+c)^2+54*B*cos(d*x+c)^2+63*C*cos(d*x+c)^2+40*A*cos(d*x+c)+45*B*cos(d*x+c)+35*
A)*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^(9/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.58 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 \, {\left (8 \, {\left (16 \, A + 18 \, B + 21 \, C\right )} \cos \left (d x + c\right )^{4} + 4 \, {\left (16 \, A + 18 \, B + 21 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (16 \, A + 18 \, B + 21 \, C\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (8 \, A + 9 \, B\right )} \cos \left (d x + c\right ) + 35 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right )^{6} + d \cos \left (d x + c\right )^{5}\right )}} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

2/315*(8*(16*A + 18*B + 21*C)*cos(d*x + c)^4 + 4*(16*A + 18*B + 21*C)*cos(d*x + c)^3 + 3*(16*A + 18*B + 21*C)*
cos(d*x + c)^2 + 5*(8*A + 9*B)*cos(d*x + c) + 35*A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(
d*cos(d*x + c)^6 + d*cos(d*x + c)^5)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*(a+a*cos(d*x+c))**(1/2)/cos(d*x+c)**(11/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 848 vs. \(2 (196) = 392\).

Time = 0.40 (sec) , antiderivative size = 848, normalized size of antiderivative = 3.75 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

2/315*(21*C*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x +
 c) + 1)^3 + 17*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*
x + c) + 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(
d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c)
 + 1)^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1)) + 9*B*(35*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1)
- 70*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 84*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1
)^5 - 58*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 9*sqrt(2)*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c)
+ 1)^9)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^4/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c
)/(cos(d*x + c) + 1) + 1)^(9/2)*(4*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 6*sin(d*x + c)^4/(cos(d*x + c) + 1)^4
 + 4*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 1)) + A*(315*sqrt(2)*sqrt(a)*
sin(d*x + c)/(cos(d*x + c) + 1) - 735*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 1302*sqrt(2)*sqrt(
a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 1206*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 431*sqrt(2
)*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 107*sqrt(2)*sqrt(a)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11)*(si
n(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^5/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(11/2)*(-sin(d*x + c)/(cos(d*x
 + c) + 1) + 1)^(11/2)*(5*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 10*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 10*si
n(d*x + c)^6/(cos(d*x + c) + 1)^6 + 5*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + sin(d*x + c)^10/(cos(d*x + c) + 1)
^10 + 1)))/d

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 8.34 (sec) , antiderivative size = 629, normalized size of antiderivative = 2.78 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (\frac {\left (256\,A+288\,B+336\,C\right )\,1{}\mathrm {i}}{315\,d}-\frac {C\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,8{}\mathrm {i}}{3\,d}+\frac {C\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,8{}\mathrm {i}}{3\,d}-\frac {{\mathrm {e}}^{c\,9{}\mathrm {i}+d\,x\,9{}\mathrm {i}}\,\left (256\,A+288\,B+336\,C\right )\,1{}\mathrm {i}}{315\,d}+\frac {{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\left (1152\,A+1296\,B+1512\,C\right )\,1{}\mathrm {i}}{315\,d}-\frac {{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\left (1152\,A+1296\,B+1512\,C\right )\,1{}\mathrm {i}}{315\,d}+\frac {{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\left (2016\,A+1008\,B+2016\,C\right )\,1{}\mathrm {i}}{315\,d}-\frac {{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\left (2016\,A+1008\,B+2016\,C\right )\,1{}\mathrm {i}}{315\,d}\right )}{\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+6\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+6\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,8{}\mathrm {i}+d\,x\,8{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,9{}\mathrm {i}+d\,x\,9{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}} \]

[In]

int(((a + a*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(11/2),x)

[Out]

((a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(((256*A + 288*B + 336*C)*1i)/(315*d) - (C*exp(
c*3i + d*x*3i)*8i)/(3*d) + (C*exp(c*6i + d*x*6i)*8i)/(3*d) - (exp(c*9i + d*x*9i)*(256*A + 288*B + 336*C)*1i)/(
315*d) + (exp(c*2i + d*x*2i)*(1152*A + 1296*B + 1512*C)*1i)/(315*d) - (exp(c*7i + d*x*7i)*(1152*A + 1296*B + 1
512*C)*1i)/(315*d) + (exp(c*4i + d*x*4i)*(2016*A + 1008*B + 2016*C)*1i)/(315*d) - (exp(c*5i + d*x*5i)*(2016*A
+ 1008*B + 2016*C)*1i)/(315*d)))/((exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*1i + d*x*1i)*(
exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp(c*2i + d*x*2i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i
 + d*x*1i)/2)^(1/2) + 4*exp(c*3i + d*x*3i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 6*exp(c*4i
+ d*x*4i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 6*exp(c*5i + d*x*5i)*(exp(- c*1i - d*x*1i)/2
 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp(c*6i + d*x*6i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) +
4*exp(c*7i + d*x*7i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*8i + d*x*8i)*(exp(- c*1i -
d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*9i + d*x*9i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(
1/2))